The Role of MCP in Modern AI Development

MCP acts as a universal translator between AI models and tools. When an AI model needs to perform a specific task - whether it's analyzing an image, querying a database, or making an API call - MCP provides the structured format for this interaction. This standardization brings several key benefits to modern AI development.

Simplified Integration
Enhanced Scalability

Key Features

  • Tool definitions with clear interfaces
  • Parameter validation and type safety
  • Error handling and responses
  • API endpoint structure

Implementation Example: Weather Tool

// Basic MCP Tool Interface
interface MCPTool {
  name: string;
  description: string;
  parameters: { type: "object"; properties: Record<string, unknown>; required: string[] };
  execute: (params: Record<string, unknown>) => Promise<unknown>;
}

// Example Weather Tool Implementation
const weatherTool: MCPTool = {
  name: "getWeather",
  description: "Get current weather for a location",
  parameters: {
    type: "object",
    properties: {
      location: { type: "string", description: "The city or ZIP code to get weather for" },
    },
    required: ["location"],
  },
  execute: async (params: Record<string, unknown>) => {
    const { location } = params as { location: string };
    const mockWeatherData = {
      location,
      temperature: Math.floor(Math.random() * 30) + 10,
      condition: ["Sunny", "Cloudy", "Rainy"][Math.floor(Math.random() * 3)],
      timestamp: new Date().toISOString(),
    };
    return mockWeatherData;
  },
};

// Example Usage
async function callMCPTool(tool: MCPTool, input: Record<string, unknown>) {
  try { return await tool.execute(input); } catch (error) { throw new Error("Failed to execute MCP tool"); }
}